
THEORETICAL TREATMENT OF RAPID SORPTION KINETICS
MEASURED IN BATCH ARRANGEMENT

Andre MICKEa, Peter STRUVEa, Milan KOCIRIKb and Arlette ZIKANOVAb

a Centre of Heterogeneous Catalysis, 
Rudower Chaussee 5, 12489 Berlin, Germany
b The J. Heyrovsky Institute of Physical Chemistry, 
Academy of Sciences of the Czech Republic, 182 23 Prague 8, The Czech Republic

Received September 16, 1993
Accepted November 22, 1993

Universal solution of a family of sorption kinetic models which are based on superposition principle
has been developed to describe sorption experiments in a closed system. The models account for the
interactions of a sorbate–sorbent system with the apparatus which arise (i) from the mass balance
condition in a closed system and (ii) from a finite rate of sorbate supply to the sorbent, the latter
effect being of importance particularly in rapid nonstationary kinetic processes. Theoretical uptake
curves for the intracrystalline sorption kinetics in zeolite crystals are exemplified using numerical
solution of the corresponding Volterra integral equations which represent kinetic models of the over-
all transient sorption process in the apparatus. The approach appears to be promising for treatment of
sorption kinetics in multicomponent systems.

The Volterra Integral Equation (VIE) approach has recently been proposed to solve
mathematical models of sorption kinetics from the gas phase measured under constant
volume/variable pressure conditions1. For fast sorption kinetics with characteristic
times amounting to about one second, one arrives at the limits of the experimental
method and thus, the valve used to start the experiment may distort the uptake curves
considerably.

In a previous publication2, the valve effect was analyzed thoroughly for a special
type of sorption kinetics. The use of the VIE approach1,3,4, offers a general way to
compute sorption uptake curves affected by the limited rate of sorbate supply through
valves and tubings of the experimental apparatus. In such a manner the limits of the
experimental methods can in principle be displaced about one order of magnitude to
lower intrinsic time constants of sorption kinetics whatever type of valve may be used.

DESCRIPTION OF THE EXPERIMENT

The principal scheme of the experimental piezometric apparatus is given in Fig. 1. The
apparatus consists of a dosing vessel of the volume Vd, with the pressure pd(t) of sorb-
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ing species kept at the temperature Td and of a sample vessel of the volume Vv with the
pressure pv(t) of sorbing species kept at the temperature Tv. The sample volume con-
tains sorbent particles of the total volume Vs. Both vessels are separated from each
other by a valve with the conductivity κ defined for small pressure differences pd − pv

as

κ =  
n
.

pd − pv
  , (1)

where n
.
 denotes the amount of sorbing species passing through the valve per unit time.

The apparatus is operated stepwise increasing the pressure of sorbing species by a small
increment to the initial value

pd(0) =  pd
0 (2)

at the beginning of each experimental run.
The conductivity κ is assumed to be a function of an average pressure in the ap-

paratus. For small pressure differences one takes

p
_
 =  

pd
0 + pv

0

2
  , (3)

where pv
0 and pd

0 are the equilibrium pressures in the apparatus prior to starting sub-
sequent experimental runs. The averaged pressure p is considered to be constant for a
given experimental run, but the conductivity κ is assumed to be externally controlled
according to a known time programme, i.e.

FIG. 1
Schematic diagram of the piezometric apparatus
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κ =  κ(p
_

,t) = κ(pd,pv,t)  . (4)

It is supposed that κ  increases monotonically from κ  = 0 at t = 0 to a limiting value
κ = κ∞ for t  > t0 where t0 is a time interval necessary to adjust the valve to be entirely
open. The functions in Eq. (4) are estimated on the basis of blank experiments.

In the present model, all heat transport phenomena are neglected which accompany
the mass transport from the dosing vessel into the sorption vessel. Usually, the sorption
kinetics is observed by measuring the pressure pd by means of a membrane manometer
included into the volume Vd so that one determines the pressure pd

0 and the function
pd(t) until the corresponding equilibrium pressure p∞ is established in the apparatus.

THEORETICAL

Overall Mass Balance in the Apparatus

The mass balance at time t is expressed by the equation

Kd[p(t) − pd
0] + Kv[pv(t) − pv

0] + Vs[a
_
(t) − a

_
0] = 0 (5)

which can be written for t → ∞ as

1 − 
Kd

Kv
  

pd
0 − p∞

p∞ − pv
0 + 

Vs

Kv
  

[f(p∞) − f(pv
0)]

p∞ − pv
0   =  0  , (6)

where f denotes the sorption isotherm (see Eq. (16)). Using Eq. (6), the equilibrium
pressure p∞ can be calculated uniquely by numerical methods. In these equations Kd and
Kv are the capacities of the respective volumes given as

Kd = Vd /RTd  (7)

Kv = Vv /RTv  , (8)

a(t), a(∞) = f(p∞) and a0 = f(pv
0) are the sorbed amounts of the sorbing species at respec-

tive times averaged over the volume of sorbent particles, i.e.

Rapid Sorption Kinetics 991

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



a
_
(t) = 

1
V∆

  ∫ 
V∆

 a(t,x)dx (9)

with a(t,x) expressing the amount sorbed per unit volume of the sorbent.
Furthermore, one introduces

ν ≡ Kd/Kv (10)

λ ≡  
Vs

Kv
  

[a
_
(∞) − a

_
0]

p∞ − pv
0   . (11)

Thus it follows from Eq. (6) that

pd
0 − p∞

p∞ − pv
0  =  

1 + λ
ν   . (12)

The sorption equilibrium is characterized by the isotherm

as = f(p) . (13)

Besides, it is assumed that at any instant t sorption equilibrium is established between
the gaseous phase and the surface of sorbent particles, i.e.

a
_
(∞) = as(∞) = f(p∞) (14)

a
_
(0) = a

_
0 = as(0) = as

0 = f(pv
0) (15)

and

as(t) = f[pv(t)]  , (16)

where as denotes the adsorbed amount sorbed at the surface of sorbent particles. Intro-
ducing the dimensionless quantities
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γd(t) =  
pd(t) − p∞

pd
0 − p∞

(17)

and

γv =  
pv(t) − pv

0

p∞ − pv
0   , (18)

Eq. (5) leads to

γv(t) + (1+λ)γd + λ  
[a
_
(t) − a

_
0]

f(p∞) − f(pv
0)

 = 1 + λ  . (19)

Equation (16) can be rewritten as

as(t) = f

 (p∞ − pv

0)γv(t) + pv
0


   . (20)

Kinetic Equations

Any information on the intrinsic sorption kinetics is given by the function H(t) which
represents the molecular uptake by the sorbent particles for the unit step change in
surface concentration as. Using the superposition principle5, one can write

a
_
(t) − a

_
0 = ∫ 

0

t

H ′(t − s) [as(s) − as
0] ds (21)

and, therefore, one obtains

a
_
(t) − a

_
0

f(p∞) − f(pv
0)

 = ∫ 
0

t

H ′(t − s) F[γv(s)] ds (22)

with

F(x) = 
f


 x(p∞ − pv

0) + pv
0


  − f(pv

0)
f(p∞) − f(pv

0)
  . (23)

The rate of depletion of the substance in the volume Vd is expressed as
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− 
dpd(t)

dt
 = β(t) [pd(t) − pv(t)]  ,      β(t) = 

κ(t)
Kd

(24)

or as

dγd

dt
 + β(t)γ(t) = β(t) ν

1 + λ  [γv(t) − 1]  . (25)

Solution of the Mathematical Model

Integrating Eq. (25) with the initial condition γd(0) = 1 yields

γd(t) = e−z(t) + 
ν

1 + λ  ∫ 
0

t

β(s)[γv(s) − 1]e−[z(t) − z(s)] ds  , (26)

where

z(t) = ∫ 
0

t

β(s) ds  . (27)

Inserting for γd from Eqs (22) and (26) into Eq. (19) and rearranging, one obtains

γv(t) + ν∫ 
0

t

β(s)γv(s)e−[z(t) − z(s)] ds + λ ∫ 
0

t

H ′  (t − s)F[γv(s)] ds = (1 + λ + ν) (1 − e−z(t) ) . (28)

Solving the non-linear VIE (28) for selected functions H(t), β(t) and values of the par-
ameters λ  and ν, one computes the function γv(t). This function can in principle be
compared with experimental data, provided it is possible to monitor the pressure in
both vessels.

Usually, however, the pressure is measured only in the dosing volume, and the func-
tion γd(t) is the observable quantity. Thus the solution of the problem proceeds in two
steps: (i) solving Eq. (28) to compute γv(t) and (ii) computing the function γd(t) accord-
ing to Eq. (22).

It is of interest to discuss two particular cases of the valve behaviour (see Fig. 2)

κ(t) = 




0
κ∞

   
for
for

   
t ≤ 0
t > 0

(29)
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κ(t) = 













0        for   t ≤ 0
κ∞

t0
t    for   0 < t ≤ t0

κ∞      for   t > t0

   . (30)

In the case described by Eq. (29), one inserts into Eqs (26) and (28)

β(t) = β = κ∞ ⁄ Kd     for  t > 0 (31)

and

γd(t) = e−βt + β 
ν

1 + λ  ∫ 
0

t

e−β(t − s) [γv(s) − 1] ds  . (32)

For γv one obtains the equation

γv(t) + νβ ∫ 
0

t

γv(s)e−β(t − s) ds + λ ∫ 
0

t

H ′(t − s)F[γv(s)] ds = (1 + λ + ν)  (1 − e−βt)  . (33)

In the case described by Eq. (30) it holds

β(t) = 












κ∞ t

Kdt0
 = αt     for  0 < t ≤ t0

κ∞

Kd
 = αt0      for  t > t0  ,

(34)

FIG. 2
Behaviour of the valve conductivity κ of the
model a described by Eq. (29) and model b
described by Eq. (30); κ and t are plotted in
arbitrary units
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where

α = 
κ∞

Kdt0
(35)

and the function z(t) in Eq. (28) acquires the form

z(t) = 











α
2

 t2                for  0 < t ≤ t0

αt0t − 
α
2

t0
2      for  t > t0  .

(36)

RESULTS AND DISCUSSION

To examine the effect of the valve (with the characteristics expressed by Eqs (29) and
(30)) on the form of uptake curves, the uptake curves were simulated for situations at
which the contribution of the valve to the total time constant of the transient response
was estimated to be about 50% based on the calculation of statistical moments of the
uptake curves.

For these calculations, experiments with a linearized sorption isotherm, i.e.

F [γv(t)] = γv(t)  , (37)

were selected and the sorption kinetics was considered to be limited by the diffusion
into spherical particles of uniform size, i.e. we have6

H(t) = 1 − 
6
π2 ∑ 1

n2

n = 1

∞

 e−n2π2Dt

R2 (38)

with R and D being the radius of the spherical particles and the diffusion coefficient,
respectively.

All examples of simulation were calculated by means of the programme package
ZEUS for sorption kinetics on porous adsorbents. The algorithm for the solution of the
Volterra Integral Equations is based on adapted quadrature formulas described else-
where7 – 11.

The results of this simulation are exemplified in Fig. 3. Therein, curve 1 represents
the case of intrinsic sorption kinetics not distorted by the valve effect. In contrast to this
case, the curves 2 and 3 represent cases of instantaneous sorption equilibrium hindered
by a valve effect of type (29) for different conductivity parameters κ∞ (such curves are
called relaxation curves). One yields the model without valve effect if κ∞ goes to in-
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finity. In this case, the curve γv approximates more and more a pressure jump from pv
0

to pd
0 at the time t = 0. For small values of κ∞, the valve effect dominates the behaviour

of γv. The curves γd from Fig. 3 are shown in Fig. 4. Curve 1 represents again the case
without valve effect being identical with curve 1 from Fig. 3 but now with the normal-
ization of γd (see Eq. (17)). In both figures the normalization of all curves is the same
because of the equilibrium pressure p∞ being independent of the kind of valve.

Both Figs 5 and 6 illustrate the behaviour of the model in the case of the simulta-
neous effect of diffusion and valve, where a valve model characterized by Eq. (30) is
used. The curves were calculated for different t0 at fixed κ∞ = 1 000. The time t0 is a
measure for speed of opening the valve. Large values of t0 show the same effect as
small values of κ∞ within the valve model of Eq. (29).

It should be noted that one can estimate a relative importance of the valve effect
combining the time constant of sorption uptake curve with the parameters obtained
from blank experiments into the following relation (cf. treatment in ref.2)

χ = 
Kv(1 + λ)

Kd + Kv(1 + λ)  
Kd

κ  
1
τ   , (39)

where

FIG. 3
Simulated curves γv for pd

0 = 11 Pa, pv
0 = 10 Pa,

R T Vs/Vv = 50 J mol−1 K−1: 1  κ∞ = ∞, 2  κ∞
= 1 000, 3 κ∞= 10 mol s−1 Pa−1

FIG. 4
The curves γd corresponding to the situations
given in Fig. 3

Rapid Sorption Kinetics 997

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



τ = ∫ 
0

∞

γd(t) dt (40)

represents the time constant of the kinetic run considered which is obtained from the
corresponding experimental uptake curve. As to our experience, the valve effect should
be taken into account provided χ > 0.01 otherwise the curve fitting fails at least in the
initial part of the uptake curves.

CONCLUSIONS

The VIE model presented allows one to decide in which way a measured sorption curve
is influenced by a valve of the apparatus. By means of this model, the apparatus con-
figuration can be optimized for certain sorption kinetics and the valve effect on sorp-
tion kinetics can be eliminated numerically. In contrast to the method of statistical
moment, the new approach can be extended to the case of sorption uptake of multicom-
ponent mixtures12.

FIG. 5
Simulated curves γv for pd

0 = 11 Pa, pv
0 = 10 Pa,

R T Vs/Vv = 50 J mol−1 K−1: 1 t0 = 2.0, 2 t0 =
0.5, 3 t0 = 0.05 s

FIG. 6
The curves γd corresponding to the situations
given in Fig. 5
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SYMBOLS

a adsorbed amount, mol m−3

a adsorbed amount averaged over the volume of the sorbent particle, mol m−3

as adsorbed amount at particle surface, mol m−3

D coefficient of intraparticle diffusion, m2 s−1

f function which expresses the adsorption isotherm
F function defined by Eq. (23)
H(t) molecular uptake by sorbent particle for the unit step change in its surface 

concentration
K capacity of respective volume of the apparatus for sorbing species accumulation,

mol Pa−1

n
.

molar flow of sorbing species through the valve, mol s−1

p pressure of sorbing species, Pa
p average pressure of sorbing species in the apparatus, Pa
R gas constant, J mol−1 K−1

R radius of sorbent particle, m
s integration variable, s
T temperature, K
t time variable, s
t0 valve opening parameter, s
V volume, m3

x positional vector within the sorbent particle

z function defined by the relation z(t) = ∫ 
0

t

β(s) ds
α valve opening parameter, s−2

β function defined by Eq. (24)
γ relative molecular uptake defined by Eqs (17) and (18)
κ valve conductivity, mol s−1 Pa−1

λ parameter defined by Eq. (11)
ν parameter defined by Eq. (10)
τ time constant of the sorption uptake experiment defined by Eq. (40)
χ criterion of relative importance of valve effect defined by Eq. (38)

Superscripts

0 refers to initial value of a variable
′ refers to the operator d/dt

Subscripts

d refers to the dosing volume
s refers to the sorbent
v refers to the sorption volume
∞ refers to the value of a variable at t → ∞
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